FACTORS AFFECTING THE RATE OF A CHEMICAL REACTION

TEMPERATURE

THE HIGHER THE TEMPERATURE THE FASTER THE RATE OF REACTION
Particles are moving faster - have greater kinetic energy.
So there are more collisions per second
AND
MORE OF THE PARTICLES HAVE ENERGY GREATER OR EQUAL TO Ea and so more of the collisions THAT are occurring lead to a successful reaction.

When explaining temperature you need BOTH of these important ideas!!

CONCENTRATION

The higher the concentration of a reactant (or reactants), the more particles per unit volume will collide per second.
metal

RATES OF REACTION

Measuring rates of reaction.

- Collect gas in a syringe or water filled measuring cylinder: record volume of gas at time intervals
- Measure loss of mass over time e.g. $\mathrm{CaCO}_{3} \&$ acid in a flask standing on a digital balance
- Time how long for a coloured chemical to appear or disappear

SURFACE AREA

Consider a solid substance in a solution, e.g. magnesium metal in hydrochloric acid. When the solid is broken up, more ACID particles can collide with each piece in the same time.

Collision theory:

For a reaction to occur

- The reactants must collide!!!!
- \quad They must collide with the correct orientation

They must collide with energy greater or equal to Ea (the activation energy) for that reaction Anything that brings about more effective collisions per unit time will increase the rate of the reaction. "effective" - leading to a reaction. "collisions per unit time"? This just means how FREQUENTLY the particles collide, eg the number of collisions per second.

CATALYSTS

Provide an alternative pathway for a reaction with a lower Ea (so more molecules have the required energy to react and so the rate is faster). Are NOT used up in the process. Don't alter $\Delta \mathrm{H}$ for a reaction.

EQUILIBRIUM

Le Chatelier's Principle
"When a change is applied to a system in dynamic equilibrium, the system reacts in such a way as to oppose the effect of the change".

When a chemical equilibrium is REACHED:

- reaction is dynamic - it is moving forwards \& backwards
- the rates of forward \& backward reactions are equal
- both reactants \& products are present
- concentrations of reactants \& products remain constant

Equilibrium can only occur in a closed system, one in which nothing can be added or removed. For gases, the container must be sealed.
The equilibrium sign \rightleftharpoons does not imply equal proportions of react \& products, but that rates of forward \& reverse reactions are equal.

CONCENTRATION

K_{c} is not affected by changes in any concentration (at constant temperature). To maintain the constant the composition of the equilibrium mixture changes

$$
\begin{aligned}
& \text { left } \\
& \mathrm{A}+\mathrm{Bht} \\
& \mathrm{~B}
\end{aligned} \stackrel{\mathrm{C}}{+}
$$

increase $[A]$ or $[B]$ equilibrium moves to right increase $[C]$ or [D] equilibrium moves to left decrease $[\mathrm{A}]$ or $[\mathrm{B}]$ equilibrium moves to left decrease [C] or [D] equilibrium moves to right

CATALYSTS

Do not affect the position of equilibrium but equilibrium is reached quicker.

PRESSURE

Increase pressure (decrease volume) - equilibrium moves to side with FEWER GASEOUS MOLECULES

Decrease pressure (increase volume) - equilibrium moves to side with MORE GASEOUS MOLECULES
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
Increase in pressure favours NH3 production (4 mol of gas $\rightarrow 2 \mathrm{~mol}$ of gas will decrease pressure of system).

No change will occur when equal numbers of gaseous molecules appear on both sides.

Altering the temperature affects the rate of both backward \& forward reactions but to different extents. The equilibrium moves producing a new equilibrium constant. The direction of movement depends on the sign of ΔH.

TEMPERATURE

An increase in temperature favours the reaction that absorbs heat (endothermic reaction). A decrease in temperature favours the reaction that releases heat (exothermic reaction).
Look at a thermochemical equation e.g.

$$
4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+1170 \mathrm{~kJ}
$$

The reaction producing NH_{3} and O_{2} is endothermic and so it would be favoured by an increase in temperature.

Kc is affected by temperature. If Kc increases (bigger products \div smaller reactants) when the temperature is increased then the forward reaction is endothermic. $+\Delta \mathrm{H}$.

Determining the position of equilibrium from equilibrium constants

Value of K	Reactants or products favoured
<0.001	reactants
between 0.001 and 1000	 product
>1000	products

ACIDS \& BASES

Brønsted-Lowry definitions

Acids are proton donors
Bases are proton acceptors

Acid-base conjugate pairs differ by a proton e.g. $\mathrm{HA} / \mathrm{A}, \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$, $\mathrm{HCO}_{3}{ }^{-} / \mathrm{CO}_{3}{ }^{2-}$
Species that can act as acid or base are called amphiprotic e.g. $\mathrm{H}_{2} \mathrm{O}$ and HCO_{3}

Strong and weak acids and bases

Strong acids - fully ionised / dissociated OR react completely with water; use \rightarrow in equations e.g. $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}$

Weak acids - partially ionised / incomplete reaction with water; use \rightleftharpoons in equations
e.g. $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

Strong base $-\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}$
Weak base $-\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}+\mathrm{OH}^{-}$
Stuff you should know from level 1...
$\mathrm{pH}<7=$ acid, $\mathrm{pH} 7=$ neutral, $\mathrm{pH}>7=$ basic or alkaline. An alkali is a soluble base.
Litmus: Red litmus: stays red in acid, turns blue in alkali. Blue litmus: turned red in acid, stays blue in alkali
Universal Indicator: Red - yellow (acid), green (neutral), blue-purple (alkali)
Acid + metal \rightarrow salt + hydrogen
Acid + base \rightarrow salt + water
Acid + carbonate \rightarrow salt + water + carbon dioxide
pH
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
[] = concentration in mol L-1
$\mathrm{Kw}=$ ionic product of water $=1 \times 10^{-14}$
$2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}\left(\right.$or $\left.\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}\right)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10-{ }^{-14}$
NB when entering 2.34×10^{-5} into calculator, do 2.34 EXP ${ }^{-5}$ (don't $\times 10$ as well)

Strong Acids

Fully ionised in water
Low pH as high concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$

React faster than same concentration of weak acid as more $\mathrm{H}_{3} \mathrm{O}^{+}$available for collision at any one time. Good electrical conductors as a high conc. of ions (BOTH $\mathrm{H}_{3} \mathrm{O}^{+}$and A^{-}) to carry current In diagram below there is no HA - is 100% ionised

pH of some salt solutions

$\mathrm{NH}_{4} \mathrm{Cl}$, ammonium chloride, dissolved in water has a pH <7. It dissolves $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}$. The $\mathrm{NH}_{4}{ }^{+}$ion then reacts with a proton donor with water
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}: \mathrm{H}_{3} \mathrm{O}^{+}$is now $>\mathrm{OH}^{-}$ which makes pH < 7
$\mathrm{CH}_{3} \mathrm{COONa}$, sodium ethanoate, dissolved in water has a $\mathrm{pH}>7$. $\mathrm{CH}_{3} \mathrm{COONa}$ (s) $\rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$. The
$\mathrm{CH}_{3} \mathrm{COO}^{-}$then reacts with water.
$\mathrm{CH}_{3} \mathrm{COO}-+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
OH^{-}is now $>\mathrm{H}_{3} \mathrm{O}^{+}$which makes $\mathrm{pH}>7$

Weak Acids

Partially ionised in water
Not such a low pH as lower
concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$than the strong acid React slower than same concentration of strong acid as less $\mathrm{H}_{3} \mathrm{O}^{+}$available for collision at any one time. Poor electrical conductors as very low conc. of ions ($\mathrm{H}_{3} \mathrm{O}^{+}$and A^{-}) to carry current In diagram below it is mainly HA.

pH in (much) more detail...

pH calculations

Remember that [] = concentration, and has the units $\mathrm{mol} \mathrm{L}^{-1}$. pH of course has NO units!

Turning $\mathrm{H}_{3} \mathrm{O}^{+}$into pH

$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

E.g. 1. what is the pH if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.45 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
$\mathrm{pH}=-\log 3.45 \times 10^{-3}$
Enter as: (-) $\log 3.45$ EXP (-) 3, and then EXE

Turning pH into $\mathrm{H}_{3} \mathrm{O}^{+}$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
E.g. 2. what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$if the pH is 4.55
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-4.55}$
Enter as: SHIFT LOG (-) 4.5 5, and then EXE

K_{w}, the ionic product for water

Water self ionises to a very small extent $-2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}$
(or $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}=\mathrm{K}_{\mathrm{w}}$
$K w=1 \times 10^{-14}$

This is useful when you are asked to calculate [$\mathrm{OH}-]$ when you know the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when you know the [OH-]
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$, so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]$, and of course $\left[\mathrm{OH}^{-}\right]=\mathrm{K}^{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
E.g. 3. what is the [OH^{-}] when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] is 1.76×10^{-8}
$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Enter as: SHIFT LOG (-) $14 \div 1.76$ EXP $(-) 8$, and then EXE
Answers to examples

1. 2.46
2. $2.82 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
3. $5.68 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
4. 11.8

But what about $\left[\mathrm{OH}^{-}\right]$to pH ? Or pH to $\left[\mathrm{OH}^{-}\right]$?

You need to do it in 2 steps.
There are TWO different ways! They (should) give you the same answer! You only need to know one way.

[OH-] to pH

E.g. 4. what is the pH if $\left[\mathrm{OH}^{-}\right]=6.35 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

Method 1
Find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, then find pH
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{Kw} /\left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Method 2.
Find pOH , then find pH
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}=14-\mathrm{pOH}$
Don't round numbers along the way.... Keep all in calculator until the final answer and then write it to 3 s.f.

pH to [OH-]

This is merely the reverse. Either
first calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, then $\left[\mathrm{OH}^{-}\right]$, OR
first calculate pOH , then $\left[\mathrm{OH}^{-}\right] \quad\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$

