FACTORS AFFECTING THE RATE OF A CHEMICAL REACTION	RATES OF REACTION	Collision theory: For a reaction to occur • The reactants must collide!!!!
TEMPERATURE THE HIGHER THE TEMPERATURE THE FASTER THE RATE OF REACTION Particles are moving faster – have greater kinetic energy. So there are more collisions per second AND MORE OF THE PARTICLES HAVE ENERGY GREATER OR EQUAL TO Ea and so more of the collisions THAT are occurring lead to a successful reaction. When explaining temperature you need BOTH of these important ideas!!	 Measuring rates of reaction. Collect gas in a syringe or water filled measuring cylinder: record volume of gas at time intervals Measure loss of mass over time e.g. CaCO₃ & acid in a flask standing on a digital balance Time how long for a coloured chemical to appear or disappear 	 They must collide with the correct orientation + → → → + → → no reaction They must collide with energy greater or equal to Ea (the activation energy) for that reaction Anything that brings about more effective collisions per unit time will increase the rate of the reaction. "effective" – leading to a reaction. "collisions per unit time"? This just means how FREQUENTLY the particles collide, eg the number of collisions per second.
CONCENTRATION The higher the concentration of a reactant (or reactants), the more particles per unit volume will collide per second. metal acid acid	SURFACE AREA Consider a solid substance in a solution, e.g. magnesium metal in hydrochloric acid. When the solid is broken up, more ACID particles can collide with each piece in the same time.	CATALYSTS Provide an alternative pathway for a reaction with a lower Ea (so more molecules have the required energy to react and so the rate is faster). Are NOT used up in the process. Don't alter ΔH for a reaction. H H Reaction coordinate

	e Chatelier's Principle When a change is applied to a system in dynamic equilibrium, the system reacts in such a way as to oppose the effect of the change".				
 When a chemical equilibrium is REA reaction is dynamic - it is movin & backwards the rates of forward & backwar are equal both reactants & products are p concentrations of reactants & p remain constant 	CHED: ng forwards rd reactions present	Kc is known as the Equilibrium Consider: Consider: $aA + bB \rightleftharpoons cC + dD$ Kc = $[C]^{c}.[D]^{d}$ $[A]^{a}.[B]^{b}$ Product(s) is/are ON TOP!!!	stant	[] denotes the equilibrium concentration in mol L ⁻¹ Kc is AFFECTED by a change of temperature but is NOT AFFECTED by changes in concentration, a change of pressure OR adding a catalyst.	
Equilibrium can only occur in a closed sin which nothing can be added or remogases, the container must be sealed. The equilibrium sign \Rightarrow does not imply proportions of react & products, but the forward & reverse reactions are equal.	equal vol	RESSURE crease pressure (decrease lume) – equilibrium moves to side th FEWER GASEOUS MOLECULES	reactions but to different executions but to different execution ΔH . TEMPERATURE	fects the rate of both backward & forward stents. The equilibrium moves producing a new irection of movement depends on the sign of	
CONCENTRATION K_c is not affected by changes in any concentration (at constant temperate maintain the constant the composition equilibrium mixture changes $left$ right $A + B \rightleftharpoons C + D$ increase [A] or [B] equilibrium move increase [C] or [D] equilibrium move decrease [C] or [D] equilibrium move	ture). To ion of the ion of the s to right es to left es to left es to right	ecrease pressure (increase plume) – equilibrium moves to side th MORE GASEOUS MOLECULES $a + 3H_2 \rightleftharpoons 2NH_3$ crease in pressure favours NH3 oduction (4 mol of gas \rightarrow 2 mol of is will decrease pressure of stem). to change will occur when equal imbers of gaseous molecules opear on both sides.	(endothermic reaction). A reaction that releases hea Look at a thermochemica 4NO(g) + 6H ₂ O(The reaction producing N be favoured by an increas Kc is affected by tempera smaller reactants) when t forward reaction is endot	I equation e.g. (I) $\Rightarrow 4NH_3(g) + 5O_2(g) \Delta H = +1170 kJ$ H ₃ and O ₂ is endothermic and so it would se in temperature. ture. If Kc increases (bigger products \div the temperature is increased then the	
CATALYSTS Do not affect the position of equilibrium equilibrium is reached quicker.	n but		> 1000 > 1000	mixed, comparable amounts of reactants & product products	

ACIDS & BASES	pH	pH of some salt solutions	
	$pH = -\log\left[H_3O^+\right]$	NH ₄ Cl, ammonium chloride, dissolved in water has	
Brønsted-Lowry definitions	$[H_3O^+] = 10^{-pH}$	a pH < 7. It dissolves NH ₄ Cl(s) \rightarrow NH ₄ ⁺ + Cl ⁻ . The	
Acids are proton donors	$[] = concentration in mol L^{-1}$	$\rm NH_4^+$ ion then reacts with a proton donor with	
Bases are proton acceptors	Kw = ionic product of water = 1×10^{-14}	water	
	$2H_2O \rightleftharpoons H_3O^+ + OH^- (or H_2O \rightleftharpoons H^+ + OH^-)$	$NH_4^+ + H2O \rightleftharpoons NH_3 + H_3O^+ : H_3O^+ \text{ is now } > OH^-$	
Acid-base conjugate pairs differ by a proton	$[H_3O^+][OH^-] = 10^{-14}$	which makes pH < 7	
e.g. HA / A-, H ₃ O ⁺ / H ₂ O, NH ₄ ⁺ / NH ₃ , H ₂ O / OH ⁻ ,		CH ₃ COONa, sodium ethanoate, dissolved in water	
HCO_{3}^{-}/CO_{3}^{2-}	NB when entering 2.34 x 10^{-5} into calculator, do	has a pH > 7. CH ₃ COONa (s) \rightarrow CH ₃ COO ⁻ + Na ⁺ . The	
Species that can act as acid or base are called	2.34 EXP ⁻⁵ (don't x 10 as well)	CH_3COO^- then reacts with water.	
amphiprotic e.g. H_2O and HCO_3^-		$CH_3COO- + H_2O \rightleftharpoons CH_3COOH + OH^-$	
		OH^{-} is now > H ₃ O ⁺ which makes pH > 7	
Strong and weak acids and bases	Strong Acids	Weak Acids	
Strong acids – fully ionised / dissociated OR react	Fully ionised in water	Partially ionised in water	
completely with water; use $ ightarrow$ in equations	Low pH as high	Not such a low pH as lower	
e.g. $HA + H_2O \rightarrow H_3O^+ + A$	concentration of H_3O^+	concentration of H_3O^+ than the strong acid	
Weak acids – partially ionised / incomplete	React faster than same concentration of weak acid	React slower than same concentration of strong	
reaction with water; use \rightleftharpoons in equations	as more H₃O⁺ available for collision at any one	acid as less H_3O^+ available for	
e.g. $HA + H_2O \rightleftharpoons H_3O^+ + A^-$	time. Good electrical conductors as a high conc. of	collision at any one time. Poor	
	ions (BOTH H₃O ⁺ and A ⁻) to carry current	electrical conductors as very low conc. of	
Strong base – NaOH \rightarrow Na ⁺ + OH ⁻	In diagram below there is no HA – is	ions (H₃O ⁺ and A ⁻) to carry current	
Weak base – $NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$	100% ionised	In diagram below it is mainly HA.	
Stuff you should know from level 1			
pH < 7 = acid, pH 7 = neutral, pH > 7 = basic or			
alkaline. An alkali is a soluble base.			
Litmus: Red litmus: stays red in acid, turns blue in			
alkali. Blue litmus: turned red in acid, stays blue in			
alkali			
Universal Indicator: Red – yellow (acid), green			
(neutral), blue-purple (alkali)			
Acid + metal \rightarrow salt + hydrogen			
Acid + base \rightarrow salt + water			
Acid + carbonate \rightarrow salt + water + carbon dioxide			

pH in (much) more detail...

pH calculations Remember that [] = concentration, and has the units mol L⁻¹. pH of course has NO units!

Turning H_3O^+ into pH

 $\begin{array}{l} pH = - \log \; [H_3O^+] \\ \text{E.g. 1. what is the pH if } [H_3O^+] = 3.45 \; x \; 10^{-3} \; \text{mol L}^{-1} \\ pH = - \log \; 3.45 \; x \; 10^{-3} \\ \text{Enter as: (-) } \log \; 3 \; . \; 4 \; 5 \; \text{EXP (-) } 3, \; \text{and then EXE} \end{array}$

Turning pH into H₃O⁺ $[H_3O^+] = 10^{-pH}$ E.g. 2. what is the $[H_3O^+]$ if the pH is 4.55 $[H_3O^+] = 10^{-4.55}$ Enter as: SHIFT LOG (-) 4 . 5 5, and then EXE

K_w, the ionic product for water Water self ionises to a very small extent - $2H_2O \rightleftharpoons H_3O^+ + OH^-$ (or $H_2O \rightleftharpoons H^+ + OH^-$) [H_3O^+] [OH^-] = $10^{-14} = K_w$ Kw = 1 x 10^{-14}

This is useful when you are asked to calculate [OH-] when you know the $[H_3O^+]$ or $[H_3O^+]$ when you know the [OH-] $K_w = [H_3O^+] [OH^-]$, so $[H_3O^+] = K_w / [OH^-]$, and of course $[OH^-] = K^w / [H_3O^+]$ E.g. 3. what is the $[OH^-]$ when $[H_3O^+]$ is 1.76 x 10⁻⁸ $[OH^-] = K_w / [H_3O^+]$ Enter as: SHIFT LOG (-) 14 ÷ 1.76 EXP (-) 8, and then EXE

But what about [OH⁻] to pH? Or pH to [OH⁻]?

You need to do it in 2 steps.

There are TWO different ways! They (should) give you the same answer! You only need to know one way.

[OH-] to pH

E.g. 4. what is the pH if [OH⁻] = $6.35 \times 10^{-3} \text{ mol } \text{L}^{-1}$

Method 1. Find $[H_3O^+]$, then find pH $[H_3O^+] = Kw / [OH^-]$ pH = - log $[H_3O^+]$

Method 2. Find pOH, then find pH pOH = $-\log [OH^{-}]$ pH = 14 - pOH

Don't round numbers along the way.... Keep all in calculator until the final answer and then write it to 3 s.f.

pH to [OH-]

1. 2.46 2. 2.82 x 10⁻⁵ mol L⁻¹ 3. 5.68 x 10⁻⁷ mol L⁻¹ 4. 11.8

Answers to examples

This is merely the reverse. Either first calculate $[H_3O^+]$, then $[OH^-]$, OR first calculate pOH, then $[OH^-]$ $[OH^-] = 10^{-pOH}$

Note: Some newer calculators have replaced EXP button with x10^x (which of course does exactly the same thing!)